O.P.Code:23EE0212 **R23** H.T.No. SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech. II Year II Semester Supplementary Examinations December-2025 LINEAR CONTROL SYSTEMS (Electronics & Communications Engineering) Time: 3 Hours Max. Marks: 70 **PART-A** (Answer all the Questions $10 \times 2 = 20$ Marks) a What is Control Systems? Define Closed loop control system. CO1 L1 2M b Write the analogous electrical elements in force-voltage for the elements CO1 L1 2M of mechanical translational systems. c How the system was classified depending on the value of the damping? CO₂ L12Md What is steady state error? CO₂ L₁ 2M 1 e Define the Root locus? CO₃ L₁ 2M f What is the necessary condition for stability in S domain? CO3 L1 2M g Define gain margin. CO4 L1 2M h What are the types of compensators? CO₄ L₁ 2Mi Define observability and Controllability. 2M CO5 L1 j What is state diagram? CO5 L1 2M PART-B (Answer all Five Units $5 \times 10 = 50$ Marks) UNIT-I Determine the transfer function, X1(s)/F(s) and X2(s)/F(s) for the 2 CO1 L5 10M system shown in fig. OR

a Give the block diagram reduction rules to find the transfer function of the CO1 L3 5M system

b Explain control systems with any one example. CO1 L4 5M

UNIT-II

Define steady state error? Derive the static error components for Type 0, CO2 L2 10M Type 1 &Type 2 systems?

OR

5		Obtain the time response of un-damped second order system for unit step	CO2	L3
		input.		
		UNIT-III		
6	a	Write the differences between open loop and closed loop sytems	CO3	L1
	b	What is the stability the of the system. Explain the procedure for Routh	CO3	L2
		Hurwitz stability criterion.	Oss	115
		OR		
7		Explain the procedure for constructing root locus.	CO3	L2
		UNIT-IV		
8		List out the frequency domain specifications and derive the expressions	CO4	L2
		for resonant peak.		
		OR		
9		Develop the Bode plot for the following transfer function and determine	CO4	L4
		the system gain K for the gain cross over frequency to be 5 rad/sec.		
		$G(s) = KS^2 / (1 + 0.2S) (1 + 0.02S)$		
		UNIT-V		
10		Determine the Solution for Homogeneous and Non homogeneous State	CO5	L5
		equations.		
		OR		
11		Find a state model for the system whose Transfer function is given by	CO5	L2
		$G(s) H(s) = (7S^2 + 12S + 8) / (S^3 + 6S^2 + 11S + 9)$	Object	200
		*** END ***		7.

Page 1 of 2

4.Word C. II.